RIG CONSTRUCTION

Definitions and righting moments

G -empty weight of boat (kg)
5749 kg
Δ - full load weight of boat (kg)
6700 kg
g - ballast weight (kg)
Loa - length overal (m)
2500 kg
Boa (B) - beam overall
As - sail area (m2)
11,97 m
4 m
90 m 2
RM30 - righting moment at 30deg. heel empty boat (Nm)

40180 Nm
RM1 - righting moment at 1deg. heel empty boat (Nm)
n - number of person onboard
6
Fs - freeboard at mast (m)
1,3 m
$\sigma R M$ - additional moment from crew to windward (Nm)
HA - heelling arm (m)
$A m=E^{*} P / 2$
$\mathrm{Af}=\mathrm{I}^{*} \mathrm{~J} / 2$
$A s=A m+A f$
$\sigma R M=75 *{ }^{*}$ * $3,4 \mathrm{~B}-4,9 \mathrm{Fs}$)
$R M=R M 30$ * $\Delta / G+\sigma R M$

Forces from shrouds

Case 1. Dimentioning transverce force T1 (only foresail) $\quad \mathrm{T} 1=\mathrm{RM} / \mathrm{a} 1=$ a1- distance from WI to appermost shroud $=17,74 \mathrm{~m}$
Case 2. Dimentioning transverce force T2 (only deeply reefed main) T2=RM/a2 a2- distance from WI to geometr. centre of reefed mainsail =
Thu - force acting on upper shrouds Thu=Thead*d1/d1+d2
Thl - force acting on lower shrouds Thl=Thead*d2/d1+d2
Tbu - force acting on lower shrouds from the boom Tbu=Tboom*BD/L1
2823 N
17,74 m
8634 N
5,8 m
3455 N
997,4 N
750,3 N
Thead - force acting on the mainsail head Thead=0,4*T2
3454 N
Tboom - force acting on the boom Tboom $=0,33^{*}$ T2
2849 N
d1-distance from mainsail head to lower shrouds 4,23 m
d2-distance from mainsail head to upper shrouds
1,22 m
BD - distance from deck to boom
$1,295 \mathrm{~m}$
L1 - Distance from deck to first spreaders
$4,918 \mathrm{~m}$
L2 - Distance from first spreaders to second spreaders
5,44 m
L3 - Distance from second spreaders to upper shrouds
5,51 m

$\beta 1=$	13 deg.	0,23	rad.
$\beta 2=$	13 deg.	0,23	rad.
$\beta 3=$	11 deg.	0,19	rad.
$\mathrm{y} 1=$	$0,3 \mathrm{deg}$.	0,01	rad.
$\mathrm{y} 2=$	$2,6 \mathrm{deg}$.	0,05	rad.
$\mathrm{I}=$	$16,33 \mathrm{~m}$		
$\mathrm{P}=$	15 m		
$\mathrm{E}=$	$5,19 \mathrm{~m}$		

$E=\quad 5,19 \mathrm{~m}$

chng	sheet	N docum.	sign.	date

Dimentioning Forces for Shroud and Shroud load

Dimentioning Forces F1, F2, F3						
Type of rig	Case 2(only r/ main)		Case1(only staysail)			
	F1	F2	F3	F1	F2	F3
F0	Thu+Tb	0	0	T1	0	0
M-1/F-1	Thl+Tbl	Thu	0	0	T1	0
M-2/F-2 (1*)	Tbu	Thl	0	0	0	T1
M-2/F-2 (2*)	Thl+Tbl	Thu	0	0	0	T1
Meanings	1747,6	3455	0	0	0	2823

$1^{*}-$ if $B D+0,6 P>L 1+L 2$
$2^{*}-$ if $B D+0,6 P<L 1+L 2$
$\begin{array}{ll}\mathrm{BD}+0,6 \mathrm{P}= & 10,271 \\ \mathrm{~L} 1+\mathrm{L} 2= & 10,358\end{array}$

$\mathrm{L} 1=$	$4,918 \mathrm{~m}$
$\mathrm{~L} 2=$	$5,44 \mathrm{~m}$
$\mathrm{~L} 3=$	$5,51 \mathrm{~m}$
$\mathrm{BD}=$	$1,295 \mathrm{~m}$

F-2

Shroud Tension (D\#, V\#)

```
D3 = F3/sin}33
14795 N
\(\mathrm{V} 2=\mathrm{F} 3 /\left(\cos \mathrm{Y}^{*} \mathrm{tg} \beta 3\right)=\)
14538 N
\(\mathrm{C} 2=\mathrm{F} 3-\mathrm{V} 2^{*}\) sin \(\mathrm{y} 2=\)
2164 N
D2 \(=(F 2+C 2) / \sin \beta 2=\)
24977 N
\(\mathrm{V} 1=(\mathrm{F} 2+\mathrm{C} 2) /\left(\cos 1^{*} \mathrm{tg} \beta 2\right)+\mathrm{V} 2^{*} \cos \gamma 1 / \cos \gamma 2=\)
38890 N
\(\mathrm{C} 1=\mathrm{F} 2+\mathrm{C} 2+\mathrm{V} 2 * \sin \gamma 2-\mathrm{V} 1 * \sin \gamma 1=\)
6074 N
\(D 1=(F 1+C 1) / \sin \beta 1=\)
28751 N
```


Dimentioning Loads (P\#)

PD1 $=2,8^{*}$ D1 (single lower shrouds) $=$	80502 N
PD1 $=2,5^{*}$ D1 (double lower shrouds) $=$	71877 N
PD2 $=2,3^{*} \mathrm{D} 2=$	57446 N
PD3 $=3,0^{*} \mathrm{D} 3=$	44400 N
PV1 $=3,2^{*} \mathrm{~V} 1=$	124447 N
PV2 $=3,0^{*} \mathrm{~V} 2=$	43614 N

[^0]| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| chng | sheet | N docum. | sign. | date |

The foremost sail carrying forestay shall have a breaking strength (Pfo) of at least:

Pfo $=15^{*}$ RM $/(1+F s)=$
42609 N

The inner forestay shall have a breaking strength (Pfi) of at least:
$\mathrm{Pfi}=12^{*} \mathrm{RM} /(\mathrm{I}+\mathrm{Fs})=$
36802 N

The aft stay shall have
a breaking strength (Pfi) of at least:
$\mathrm{Pa}=$ Pfo*sinaf/sinaa $=\quad 38498 \mathrm{~N}$ (masthead rig)
$\mathrm{Pa}=2,8^{*} \mathrm{RM} /($ la*sin $\alpha \mathrm{a})=22355 \mathrm{~N}$ (fractional rig)

$\alpha f=$	18 deg.	$0,314 \mathrm{rad}.$.
$\alpha \mathrm{a}=$	20 deg.	$0,349 \mathrm{rad}$.
$\mathrm{la}=$	$18,34 \mathrm{~m}$	

Transverse mast dimentioning
Reguired transverce moment of inertia (Ix) for the mast:

M-2/F-2

chng	sheet	N docum.	sign.	date

Panel 1
$\mathrm{lx}=\mathrm{k} 1^{*} \mathrm{~m}^{*} \mathrm{PT}^{*} \mathrm{~L}^{\wedge}{ }^{\wedge} 2=\quad 4689230 \mathrm{~mm} 4$
Panel 2
$\mathrm{lx}=\mathrm{k} 1^{*} \mathrm{~m}^{*}\left(\mathrm{PT}-\mathrm{D} 1^{*} \cos \beta 1\right)^{*} \mathrm{~L} 2^{\wedge} 2=\quad 2827586 \mathrm{~mm} 4$
Panel 3
$1 \mathrm{x}=\mathrm{k} 1^{*} \mathrm{~m}^{*}\left(\mathrm{PT}-\left(\mathrm{D} 1^{*} \cos \beta 1+\mathrm{D} 2^{*} \cos \beta 2\right)\right)^{*} \mathrm{~L} 3^{\wedge} 2=\quad 307425 \mathrm{~mm} 4$
$\begin{array}{lc}\text { lx }=\text { k1*m*PT*L(n)^2 } & 4689230 \mathrm{~mm} \\ \text { PT=1,5*RM/b }= & 55235 \mathrm{~N} \\ \text { k1 - panel factor (from table below) }= & 3,51 \\ \text { m - for aluminium }= & 1 \\ \mathrm{~L}(\mathrm{n}) \text { - actual panel length } & \\ \text { k3 }=1,35 \text { for deck stepped mast } & 1,35 \\ \text { k3 }=1,0 \text { for deck stepped mast } & 1 \\ b= & 1,36 \mathrm{~m}\end{array}$
When calculating Ix for panel 2 PT can be decreased by:
D1* $\cos \beta 1$
When calculating Ix for panel 3 PT can be decreased by: D1* $\cos \beta 1+\mathrm{D} 2 * \cos \beta 2$

Type of rig	Panel Factor k1		
	Panel1	Panel 2 \& 3	
F-0	$2,4^{*} \mathrm{k} 3$		
F-0 shrort spr.	$1,6^{*} \mathrm{k} 3$		
M-1	$2,3^{*} \mathrm{k} 3$	3,5	3,5
F-1	$2,4^{*} \mathrm{k} 3$	3,35	3,35
M-2	$2,7^{*} \mathrm{k} 3$	3,8	3,8
F-2	$2,6^{*} \mathrm{k} 3$	3,6	3,6

-

Longitudinal mast dimentioning

Reguired longitudinal moment of inertia for mast (ly):

$$
\mathrm{ly}=\mathrm{k} 2^{*} \mathrm{k} 3^{*} \mathrm{~m}^{*} \mathrm{PT}^{*} \mathrm{~h}^{\wedge} 2=\quad 15024325 \mathrm{~mm} 4
$$

PT $=1,5^{*}$ RM $/ \mathrm{b}=$
55235 N
k2 - staying factor (from table below) $=0,8$
$\mathrm{m}=1$ for aluminium
$\mathrm{k} 3=1,35$ for deck stepped mast $\quad 1,35$
h - heigth above deck or superstructure
to the highest sail carrying forestay $=15,87 \mathrm{~m}$

Type of staying	Staying Factor k2				
	F-0	M-1	F-1	M-2	F-2
Double lowers		0,85	0,8	0,9	0,85
Single lowers		0,8	0,75	0,85	0,8
Runners \& i.1			0,85		0,8
Runners \& c.s			0,95	0,95	0,9
Swept spreadr.			1		0,95
Short spreadrs	1,05				
No spreaders	2				

Boom requirement

The gooseneck shall be able to withstand a vertical and horisontal force of:
$\mathrm{Fv}=0,5^{*} \mathrm{RM}^{*} \mathrm{E} /\left(\mathrm{HA}{ }^{*} \mathrm{~d} 1\right)=$
10387 N
$\mathrm{Fh}=0,5^{*} \mathrm{RM}{ }^{*} \mathrm{E} /\left(\mathrm{HA} \mathrm{A}^{*} \mathrm{~d} 2\right)=$ 13622 N

HA - distance from WL to centre of effort of sails =
7,82 m
$\mathrm{E}=$
5,19 m
d1 =
1,6 m
$\mathrm{d} 2=1,22 \mathrm{~m}$
$\sigma 0,2$ - yield strength for spreaders $(\mathrm{N} / \mathrm{mm} 2)=\quad 210 \mathrm{~N} / \mathrm{mm} 2$
Reguired vertical Section Modulus for the boom is:
$S M=600^{*} \mathrm{RM}^{*}(\mathrm{E}-\mathrm{d} 1) /\left(\sigma 0,2^{*} \mathrm{HA}\right)=$
65688 mm3
The horizontal Section Modulus is to be at least 50% of the vertical $=$
32844 mm3

| | | | | | ROOTS Rig Construction | st |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| chng | sheet | N docum. | sign. | date | | |

The moment of inertia of the spreader at half span is to be:
$I=0,8^{*} C(n)^{*} S(n)^{\wedge} 2 /\left(E^{*} \cos \sigma\right)=$
127213 mm4

E -modulus of elasticity of spreader $=$	69340
S(n) - length of spreader	1260 mm
σ - horizontal angle of spreader $=$	29 deg.
C(n)-transverce component of shroud	
force $=$	

Close to the mast spreader shall have a Section Modulus of

$$
S M=k^{*} S(n)^{*} V(n)^{*} \cos \sigma=
$$

$k=0,16 / \sigma 0,2=$
$\mathrm{Vn}=\mathrm{V} 1$ for lower spreaders, D3 - for upper spreaders
32653 mm3
8E-04
38890 N/mm2
$\sigma 0,2$ - yield strength for spreaders $(\mathrm{N} / \mathrm{mm} 2)=$
210 N/mm2
The spreaders attachment shall be able to withstand a moment of:
Ms $=0,16 * S(n)^{*} \cos \sigma=$
176,3 Nmm

Enter in the table below with all values to pick the relevant shrouds, stays and rig components.

Mast	Main Dirm. (mm)	$\left(\begin{array}{l} I y \\ \left(\mathrm{~cm}^{4}\right) \end{array}\right.$	$\left(\begin{array}{c} I x \\ \left(c m^{4}\right) \end{array}\right.$	Wall Thkn. (mm)	$\begin{gathered} \text { Welght } \\ \mathrm{Kg} / \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { SMy } \left._{3}\right) \\ & \left(\mathrm{cm}^{3}\right) \end{aligned}$	$\begin{gathered} 5 M_{x} \\ \left(\mathrm{~cm}^{3}\right) \end{gathered}$
Oval Sect.	122/85	165	75	2.45	2.43	23.6	17.6
	$130 / 93$	215	100	2.50	2.71	29.0	21.5
	138/95	287	139	2.85	3.35	35.0	29.3
	155/104	413	191	- 3.05	3.69	45.9	36.7
	1707115	559	260	3.10	4.11	58.1	45.2
	177/124	725	345	3.40	4.75	74.7	55.6
	189/132	956	458	3.70	5.73	89.3	69.4
	206/139	1310	613	4.10	6.44	115	88.2
	224/150	1775	830	4.50	7.32	143	111
	237/162	2360	1120	4.85	8.76	176	138
	$274 / 185$	3650	1650	4.90	10.32	232	178
Delta sect.	121/92	205	122	3.00	3.15	28.9	26.5
	$129 / 100$	292	175	3.50	3.74	38.9	35.0
	137/113	375	250	3.90	4.21	50.0	44.2
	146/112	508	310	4.40	5.05	61.9	55.3
	160/132	750	500	5.30	6.67	80.6	75.7
Furl. Sect.	190/94	580	200	3.00	4.69	55.4	42.5
	$213 / 104$	850	290	3.15	5.45	73.2	55.7
	235/116	1240	435	3.40	6.55	97.6	75.0
	232/126	1590	605	5.00	8.71	128	96
	260/136	2400	900	5.75	10.36	176	132
	2901150	3520	1300	6.00	12.63	224	173
Boom Sect.	86/59	60	23	1.80	1.67	14.0	7.8
	$120 / 62$	155	42	1.80	2.16	24.8	13.7
	$143 / 76$	290	80	2.20	2.83	39.4	20.9
	162/125	615	330	2.80	4.75	76.0	53.0
	171/94	610	170	2.80	4.03	67.7	35.7
	200/117	1190	325	2.80	5.36	112	55.5
	250/140	2410	640	3.20	6.96	185	97.4
Spinn	48/48	7.65	7.65	2.00	0.75		
	$60 / 60$	15.4	15.4	2.00	1.00		
	$72 / 72$	29.9	29.9	2.20	1.38		
Pole	84/84	48.8	48.8	2.20	1.53		
	96/96	72.3	72.3	2.20	1.76		
Sect.	99/99	123	123	3.60	2.65		
	$111 / 111$	197	197	4.10	3.38		

Matching components made of stalniess steel, type AISI-316

1×19 WIre			Rigging Scrow		Chalmplate lug (seo flg.)				alnplate lug
Diam (mm)	$\begin{aligned} & \text { Br.str } \\ & (\mathrm{N}) \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & (\mathrm{kg} / \mathrm{m}) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Diam } \\ \text { (in) } \end{array}$	$\begin{aligned} & B r \cdot s t r \\ & (N) \end{aligned}$	$\begin{gathered} a \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} b \\ (m m) \end{gathered}$	$\begin{gathered} c \\ (m m) \end{gathered}$	$\begin{gathered} d \\ (m m) \end{gathered}$	
3	7700	0.040	1/4	14700	20.0	5.0	12.0	8.5	
4	13800	0.073	5/16	22600	22.0	6.0	13.0	10.0	
5	21600	0.113	3/8	33400	25.0	8.0	16.0	12.0	
5.5	25700	0.139	7/16	46100	30.0	10.0	18.0	14.0	
6	30000	0.165	7/16	46100	36.0	10.0	21.0	14.0	
7	40900	0.225	1/2	66700	38.0	12.0	24.0	16.0	
8	53500	0.327	5/8	93200	40.0	13.0	25.0	16.0	$a=$ width
10	69100	0.475	3/4	123000	45.0	14.0	27.0	18.0	$b=$ thickness $c=$ centre of hole
11	83500	0.648	3/4	123000	50.0	14.0	30.0	18.0	to top of lug $d=$ diameter of hole
12	120200	0.820	7/8	167000	60.0	18.0	36.0	22.0	
14	160100	1.000	1	218000	65.0	22.0	38.0	25.0	

chng	sheet	N docum.	sign.	date

[^0]: F-2

