

Corece

The no-problem core

"Cheap core is just about the most expensive thing you can put in a boat"

John McConaghy - McConaghy Yachts

«Дешевый сендвичевый наполнитель- практически самая дорогая вещь, которую можно вставить в лодку»

Джон МакКонахи, МакКонахи Яхтс

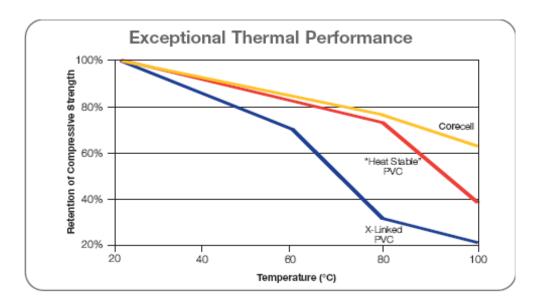
Жесткость
Надежность
Совместимость с процессом инфузии

Corecell™ S-Foam

Сэндвичевый наполнитель для плавучих объектов, испытывающих высокое давление.

CoreCell S-Foam разработан для применения в сооружениях и аппаратах, используемых в подводной среде. Непосредственно сам сэндвичевый наполнитель может выдерживать нагрузки на глубине более 1300м, при этом материал не впитывает воду.

Ультра-тонкая ячеистая структура позволяет легко обрабатывать материал и минимизировать впитываемость смолы. При помощи различных технологических процессов- фрезеровки, распиловки, сверления и т.д., из этого материала можно получать изделия сложной формы без риска растрескивания или разрушения.


Уникальные прочностные свойства наполнителя позволяют заменить им другие материалы вроде фанеры при создании высокопрочных вставок в сэндвичевую структуру.

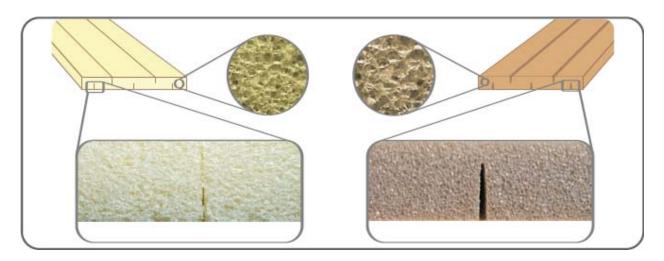
Материал имеет довольно низкую объемную плотность. Стандартные продукты обычно выпускаются в ассортименте от 150 до 300 кг/м³

Corecell™ T-Foam

Стабильный сэндвичевый наполнитель

Исключительные температурные характеристики

Высокая механическая прочность, сравнимая с ПВХ с перекрестными связями и бальсой. Материал применим во всех процессах, где применяются ПВХ и бальса.


CoreCell T-Foam отличается стабильным поведением при повышенной температуре, уменьшает эффект пропечатывания.

Это идеальный сэндвичевый наполнитель при работе с препрегами и для инфузионных процессов, где температура связующего обычно повышена.

Низкая впитываемость смолы и специальные методы нарезки Core-Cell T-Foam позволяют при его использовании в высокотехнологичных инфузионных процессах сэкономить потребление смолы и уменьшить вес конструкции.

Имеет одобрение Германского Ллойда и находится в процессе получения сертификата DNV.

CoreCell T-Foam по сравнению с ПВХ. На рисунке хорошо видны тонкие надрезы и мелкоячеистая структура CoreCell.

Специальное применение в морской индустрии.

CoreCell- первый структурный наполнитель, специально разработанный для применения в судостроении. Полимерная основа из стирена акрилонитрила (SAN) придает ему уникальные производственные и эксплуатационные свойства.

CoreCell A-Foam предназначен для корпусов и других динамически нагруженных конструкций

CoreCell P-Foam- стабилизированный при температуре A-Foam, предназначен для применения в высокотемпературных технологических процессах CoreCell T-Foam предназначен для конструкций палуб, надстроек и интерьера CoreCell S-Foam специально разработан для подводных конструкций

Преимущества CoreCell перед другими видами сэндвичевых наполнителей.

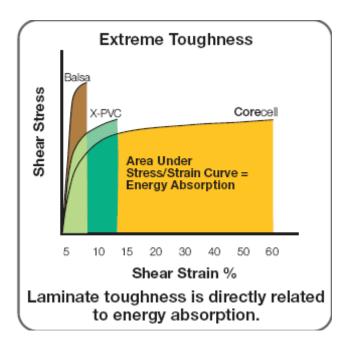
Химически материал SAN разрабатывался последние 15 лет. Этот материал вобрал в себя все лучшие свойства сэндвичевых наполнителей из других материалов.

Исключительная сопротивляемость ударным и динамическим нагрузкам, усталостная устойчивость.

Прост в использовании, легко обрабатывается.

Не впитывает воду, устойчив к смазочным материалам, топливу и гидравлическим жидкостям.

Выпускается во всех возможных форматах, приспособленных для процессов инфузии. Порезанный специальными ножами, CoreCell без проблем проводит смолу и позволяет сократить ее расход на 50%.


Не страдает при дегазации ламината и от различных замедлителей отверждения.

Подходит для использования с полиэфирными, винилэфирными и эпоксидными смолами.

Хорошо подходит для высокотемпературного формования.

Corecell™ A-Foam Corecell™ P-Foam

Характеристики сопротивления деформации сдвига намного превышает аналогичные характеристики бальсы и РVC с перекрестными связями. Так же наполнитель имеет отличные характеристики ударной вязкости.

CoreCell A-Foam и P-Foam специально разрабатывались для динамических нагрузок. Нет больше ни одного сэндвичевого наполнителя настолько безопасного в морской среде.

Наполнители имеют отличную стойкость к влиянию испаряющегося стирена и нагрева.

Одобрен регистром Ллойда, Германским Ллойдом, протестирован DNV, ABS, и главное, тяжелейшими условиями всемирных парусных соревнований.

Ниже приведены сравнительные ударные тесты различных сэндвичевых наполнителей.

Single Skin Fibreglass

Стеклянная ламинатная корка без наполнителя Серьезные повреждения конструкции Конструкция пробита Конструкция имеет большой вес

X-Linked PVC Foam

ПВХ наполнитель с перекрестными связями Серьезные повреждения конструкции Наполнитель потерял устойчивость на сдвиг Расслоение ламината Конструкция имеет средний вес

Balsa

Бальса

Полное повреждение структуры
Наполнитель потерял устойчивость на сдвиг
Повреждение не видно на поверхности
Конструкция имеет средний вес

Corecell

CoreCell Структурных повреждений нет У наполнителя нет потери устойчивости на сдвиг Нет деламинации сэндвичевой структуры Повреждение легко устранимо Конструкция имеет легкий вес

Пример высоких прочностных характеристик CoreCell

Повреждения яхты, попавшей в дорожную аварию в 2007 году. В конструкции корпуса 9-ти метровой гоночной яхты использовался CoreCell A-Foam 92кг/м³, толщина 15мм. Корпус изготовлен из стеклянного эпоксидного сэндвича методом ручного ламинирования с вакуумным отверждением и термостатированием. Вот описание повреждений:

«...Яхта упала на левый борт почти с трехметровой высоты. Основную нагрузку принял на себя незащищенный сэндвичевый борт. Эпоксидная корка выдержала удар, и повреждений оболочки корпуса в районе удара нет. Благодаря использованию дорогого пенопласта-наполнителя, способного равномерно распределять ударную нагрузку и правильно ей противостоять, повреждения возникли в районах усилений, встретившихся на пути распространения стресса. Этими местами явились угол рубки по палубе и загиб кокпита на транец. В этих местах сэндвич на транце и ламинат на сгибе рубки разрушились. Кроме того, от удара отскочили приформовки первой подкокпитной опоры и треснула приформовка койки по левому борту, являющейся несущим элементом... Практически сразу после аварии, несмотря на повреждения, которые были оценены, как незначительные, яхта была куплена новым владельцем, и через неделю была спущена на воду с новым именем.»