Computing Offset Curves for Cubic Splines

I recently had to come up with a way to create parallel curves from cubic Hermite splines, like railroad lanes. At first, I just displaced
their start/end control points along their normal directions, while keeping the same start/end tangents. It worked fine for most cases
because most splines in my use cases are not very curved.

But I soon discovered curves replicated in such a naive way often result in narrowing even with some mildly curved splines. So, I
decided to bite the bullet and looked into what other intelligent people have already figured out on it by googling.

Narrowing from the naive approach

I quickly learned that an official term for such a curve is offset curve or parallel curve. The first approach I bumped into was to
convert a curve into a poly-line, offset the poly-line, and then reconstruct it into a curve or

curves: http://stackoverflow.com/a/3220819/900762. It sounded complicated and I wanted to find a more direct approach where I
don’t need to go through the poly-line phase.

The next approach I found was offsetting its control polygon

(http://math.stackexchange.com/a/467038 and http://brunoimbrizi.com/unbox/2015/03/offset-curve). You can easily convert cubic
Hermite splines to Bézier curves as http://www.joshbarczak.com/blog/?p=730 explains. In a Bézier form, you get a control polygon
from four control points. You can offset it as below and get an offset spline from it:

An image from http://math.stackexchange.com/a/467038

As both of the links above mention, the approach won’t work for curves with high curvatures and you need to split the original curve to
multiple segments to get a better result in such cases. I didn’t think splitting / subdividing would be necessary for my use cases and
decided to give the approach a try.

I had 3D splines, so I used the distance equation between skewed lines

like http://2000clicks.com/mathhelp/GeometryPointsAndLines3D.aspx to get intersections between offsetted edges of the control
polygon. My splines also have just one tangent for each control point. In other words, no separate incoming / outgoing tangents. So,
once I calculate offset splines for neighboring segments, I set the tangent of the shared control point to an average of the end tangent
of the first segment and the start tangent of the second segment.
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The approach provided parallel curves looking good enough for the most splines I have. But offset curves for some went bananas when
their tangents are long and their control polygons self-intersect. Also, for some other cases, they kind of overcompensated and got
wider than they should be. So, I introduced some tweaks like falling back to the naive way when internal angles of the control polygon
are too acute and lerping between the results of the naive and this approach based on the cosines of the internal angles to avoid
becoming too wide in some cases. There were still some rare cases this tweaked approach fails. For them, I could have applied splitting
before this approach, but, for now, I decided to manually modify the original splines so that they can behave better with the approach
without an automatic splitting. I think having a single tangent per control point (no separate incoming / outgoing tangents) also made
some of these cases worse than it could be.

As you can see, it wasn’t totally satisfactory. It required some not-so-clean tweaks and still could not handle all cases. I dug some more
in my spare time and found out some useful info and more approaches worth trying in the future. This archived PDF

document http://web.archive.org/web/20061202151511/http://www.tho-emden.de/~hoffmann/bezier18122002.pdf explains getting
Bézier offset curves by solving a system of three linear equations, starting from the page 34. It starts with the naive approach and
compute how the resulting curve should be modified to satisfy the properties of an ideal offset curve by solving a system of linear
equations with three unknowns. The approach also has some failure cases and the document explains a way to handle them by fixing
one of the unknowns and just using two linear equations. It has sample code in Postscript.
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Captured from http://web.archive.org/web/20061202151511/http://www.fho-emden.de/~hoffmann/bezier18122002.pdf

Many references tell you that, in general, one cannot express offset curves of a Bézier curve using another Bézier curve (or any
polynomial parametric curve, for that matter, regardless of however higher-order you are willing to go). Page 28

of https://www.slideshare.net/Mark_Kilgard/22pathrenderalso says that an offset curve of an arbitrary cubic curve requires a 10th-
order algebraic curve. A very nice and detailed primer on Bézier curves at https://pomax.github.io/bezierinfo/ has all sorts of useful
info about them, with interactive and visual guides. Its section for offset curves explains another approach that involves splitting. With
it, you “chop up a curve into ‘safe’ sub-curves (where safe means that all the control points are always on a single side of the baseline,
and the midpoint of the curve at t=0.5 is roughly in the centre of the polygon defined by the curve coordinates) and then point-scale
each sub-curve with respect to its scaling origin (which is the intersection of the point normals at the start and end points).” It has all
the relevant codes in https://pomax.github.io/bezierjs/, so you can easily check its implementation details.
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Offsetting a cubic Bézier curve

Captured from https://pomax.github.io/bezierinfo/#offsetting

The two alternatives mentioned above sound sensible and look not too hard to implement. I'm going to try them when the current
approach of offsetting the control polygon becomes too fragile and cumbersome for my use cases.

This short research of mine was quite a fun and educational ride for me and demonstrated nuances and intricacies involved in a
seemingly simple question of how you can get parallel versions of a spline curve. I hope it has be a fun and of help to you, too!
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